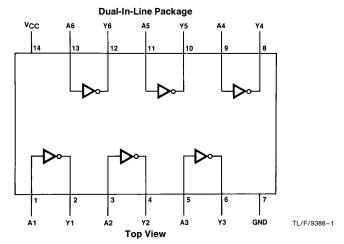


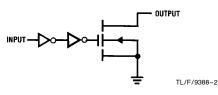
MM54HC05/MM74HC05 Hex Inverter (Open Drain)

General Description

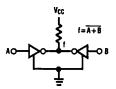

The MM54HC05/MM74HC05 are logic functions fabricated by using advanced silicon-gate CMOS technology, which provides the inherent benefits of CMOS—low quiescent power and wide power supply range. These devices are also functionally and pin-out compatible with standard DM54LS/DM74LS logic families. The MM54HC05/MM74HC05 open drain Hex Inverter requires the addition of an external resistor to perform a wire-NOR function.

All inputs are protected from static discharge damage by internal diodes to $\mbox{$V_{\rm CC}$}$ and ground.

Features


- Open drain for wire-NOR function
- Fanout of 10 LS-TTL loads
- Typical propagation delays: t_{PZL} (with 1 k Ω resistor) 8 ns t_{PLZ} (with 1 k Ω resistor) 13 ns
- Low input current: 1 µA maximum

Connection Diagram



Order Number MM54HC05 or MM74HC05

Logic Diagram

Typical Application

Note: Can be extended to more than 2 inputs.

TI /F/9388-3

Absolute Maximum Ratings (Notes 1 & 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.5V to $+7.0V$
DC Input Voltage (V _{IN})	-1.5 V to $V_{CC} + 1.5$ V
DC Output Voltage (V _{OUT})	-0.5 V to $V_{CC} + 0.5$ V
Clamp Diode Current (I _{IK} , I _{OK})	\pm 20 mA
DC Output Current, per pin (I _{OUT})	\pm 25 mA
DC V _{CC} or GND Current, per pin (I _{CC})	\pm 50 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C

Power Dissipation (PD)

(Note 3) 600 mW S.O. Package only 500 mW

Lead Temperature (T_L)

(Soldering 10 seconds) 260°C

Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage	0	V_{CC}	V
(V _{IN} , V _{OUT})			
Operating Temp. Range (T _A)			
MM74HC	-40	+85	°C
MM54HC	-55	+125	°C
Input Rise or Fall Times			
$(t_r, t_f) V_{CC} = 2.0V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	v _{cc}	T _A =	25°C	74HC T _A = -40°C to +85°C	54HC T _A = -55°C to +125°C	Units
				Тур		Guaranteed Limits		
V _{IH}	Minimum High Level Input Voltage		2.0V 4.5V 6.0V		1.5 3.15 4.2	1.5 3.15 4.2	1.5 3.15 4.2	V V
V _{IL}	Maximum Low Level Input Voltage**		2.0V 4.5V 6.0V		0.5 1.35 1.8	0.5 1.35 1.8	0.5 1.35 1.8	V V
V _{OL}	Maximum Low Level Output Voltage	$\begin{aligned} &V_{IN}\!=\!V_{IH}\\ & I_{OUT} \!\leq\!20\;\mu\text{A}\\ &R_L=\infty \end{aligned}$	2.0V 4.5V 6.0V	0 0 0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V V
		$V_{IN} = V_{IH}$ $ I_{OUT} \le 4.0 \text{ mA}$ $ I_{OUT} \le 5.2 \text{ mA}$	4.5V 6.0V		0.26 0.26	0.33 0.33	0.4 0.4	V V
I _{LKG}	Maximum High Level Output Leakage Current	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = V_{CC}$	6.0V		0.5	5	10	μΑ
I _{IN}	Maximum Input Current	$V_{IN} = V_{CC}$ or GND	6.0V		±0.1	± 1.0	± 1.0	μΑ
Icc	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND $I_{OUT} = 0 \mu A$	6.0V	_	2.0	20	40	μΑ

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

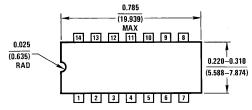
Note 2: Unless otherwise specified all voltages are referenced to ground.

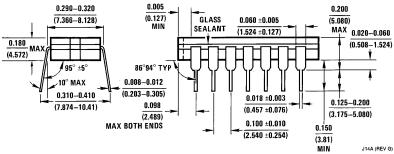
Note 3: Power Dissipation temperature derating — plastic "N" package: -12 mW/°C from 65°C to 85°C; ceramic "J" package: -12 mW/°C from 100°C to 125°C.

Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH} and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

^{**} V_{IL} limits are currently tested at 20% of V_{CC} . The above V_{IL} specification (30% of V_{CC}) will be implemented no later than Q1, CY'89.

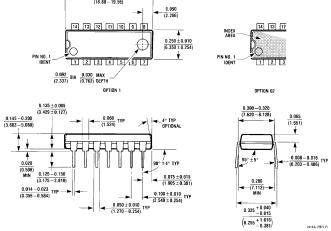
AC Electrical Characteristics $V_{CC}=5V, T_A=25^{\circ}C, C_L=15 \text{ pF}, t_r=t_f=6 \text{ ns}$


Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PZL} , t _{PLZ}	Maximum Propagation Delay	$R_L = 1 k\Omega$	8		ns


AC Electrical Characteristics $V_{CC}=2.0V$ to 6.0V, $C_L=50$ pF, $t_f=t_f=6$ ns unless otherwise specified

Symbol	Parameter	Conditions	v _{cc}	T _A =25°C		74HC T _A = -40°C to +85°C	54HC T _A = -55°C to +125°C	Units
				Typ Guaranteed Limits				
t _{PZL}	Maximum Propagation Delay	$R_L = 1 k\Omega$	2.0V 4.5V 6.0V	30 8 7	75 15 13	95 19 16	110 22 19	ns ns ns
t _{PLZ}	Maximum Propagation Delay	$R_L = 1 k\Omega$	2.0V 4.5V 6.0V	30 13 12	90 18 15	115 23 20	135 27 23	ns ns ns
t _{THL}	Maximum Output Fall Time		2.0V 4.5V 6.0V	30 8 7	75 15 13	95 19 16	110 22 19	ns ns ns
C _{PD}	Power Dissipation Capacitance (Note 5)	(per gate)		8				pF
C _{IN}	Maximum Input Capacitance			5	10	10	10	pF

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} f + I_{CC} V_{CC}$. The power dissipated by P_L is not included.


Physical Dimensions inches (millimeters)

Order Number MM54HC05J or MM74HC05J NS Package Number J14A

Physical Dimensions inches (millimeters) (Continued)

Order Number MM74HC05N NS Package Number N14A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018 National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408