

Absolute Maximum Ratings (Notes 1 \& 2)	
If Military/Aerospace specified please contact the National S Office/Distributors for availability	evices are required, miconductor Sales and specifications.
Supply Voltage (V_{CC})	-0.5 V to +7.0 V
DC Input Voltage ($\mathrm{V}_{\text {IN }}$)	-1.5 V to $\mathrm{V}_{\mathrm{CC}}+1.5 \mathrm{~V}$
DC Output Voltage (VOUT)	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Clamp Diode Current ($\mathrm{I}_{\mathrm{IK}}, \mathrm{I}_{\mathrm{OK}}$)	$\pm 20 \mathrm{~mA}$
DC Output Current, per pin (Iout)	$\pm 25 \mathrm{~mA}$
DC $\mathrm{V}_{\text {CC }}$ or GND Current, per pin (l ${ }_{\text {cc }}$)	$\pm 50 \mathrm{~mA}$
Storage Temperature Range ($\mathrm{T}_{\mathrm{STG}}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation (PD_{D}) (Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (T_{L}) (Soldering 10 seconds)	$260^{\circ} \mathrm{C}$

Operating Conditions

	Min	Max	Units
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	2	6	V
DC Input or Output Voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
$\left(\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\mathrm{OUT}}\right)$			

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	V_{CC}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{gathered} 74 \mathrm{HC} \\ \mathrm{~T}_{\mathrm{A}}=-40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 54 \mathrm{HC} \\ \mathrm{~T}_{\mathrm{A}}=-55 \text { to } 125^{\circ} \mathrm{C} \end{gathered}$	Units
				Typ	Guaranteed Limits			
V_{IH}	Minimum High Level Input Voltage		$\begin{aligned} & \hline 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} 1.5 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} \hline 1.5 \\ 3.15 \\ 4.2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.5 \\ 3.15 \\ 4.2 \\ \hline \end{gathered}$	$\begin{aligned} & V \\ & V \\ & V \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Maximum Low Level Input Voltage		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.3 \\ & 0.9 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.9 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.9 \\ & 1.2 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
V_{OH}	Minimum High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \left\|\mathrm{I}_{\mathrm{OUT}}\right\| \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \left\|\mathrm{l}_{\text {OUT }}\right\| \leq 4.0 \mathrm{~mA} \\ & \left\|\mathrm{I}_{\text {OUT }}\right\| \leq 5.2 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4.2 \\ & 5.7 \\ & \hline \end{aligned}$	$\begin{array}{r} 3.98 \\ 5.48 \\ \hline \end{array}$	$\begin{array}{r} 3.84 \\ 5.34 \\ \hline \end{array}$	$\begin{aligned} & 3.7 \\ & 5.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \hline \end{aligned}$
V_{OL}	Maximum Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \left\|\mathrm{I}_{\text {IUT }}\right\| \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \left\|\mathrm{l}_{\text {OUT }}\right\| \leq 4.0 \mathrm{~mA} \\ & \left\|\mathrm{I}_{\text {OUT }}\right\| \leq 5.2 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.26 \\ 0.26 \\ \hline \end{array}$	$\begin{aligned} & 0.33 \\ & 0.33 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
1 IN	Maximum Input Current (Pins 7, 15)	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND	6.0 V		± 0.5	± 5.0	± 5.0	$\mu \mathrm{A}$
1 IN	Maximum Input Current (all other pins)	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND	6.0 V		± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
${ }^{\text {ICC }}$	Maximum Quiescent Supply Current (standby)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mu \mathrm{~A} \end{aligned}$	6.0 V		8.0	80	160	$\mu \mathrm{A}$
ICC	Maximum Active Supply Current (per monostable)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{R}^{2} \mathrm{C}_{\mathrm{EXT}}=0.5 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 36 \\ 0.33 \\ 0.7 \end{gathered}$	$\begin{aligned} & 80 \\ & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 110 \\ & 1.3 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 130 \\ & 1.6 \\ & 3.2 \end{aligned}$	$\mu \mathrm{A}$ mA mA

Note 1: Maximum Ratings are those values beyond which damage to the device may occur.
Note 2: Unless otherwise specified all voltages are referenced to ground.
Note 3: Power Dissipation temperature derating - plastic " N " package: $-12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from $65^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$; ceramic " J " package: $-12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from $100^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
Note 4: For a power supply of $5 \mathrm{~V} \pm 10 \%$ the worst-case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5 V . Thus the 4.5 V values should be used when designing with this supply. Worst-case V_{IH} and V_{IL} occur at $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ and 4.5 V respectively. (The V_{IH} value at 5.5 V is 3.85 V .) The worst-case leakage current ($\mathrm{I}_{\mathrm{I}} \mathrm{N}$,
I_{CC}, and I_{Oz}) occur for CMOS at the higher voltage and so the 6.0 V values should be used.

AC Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$

Symbol	Parameter	Conditions	Typ	Guaranteed Limit	Units
$t_{\text {PLH }}$	Maximum Trigger Propagation Delay A, B or Clear to Q		22	36	ns
$\mathrm{t}_{\text {PHL }}$	Maximum Trigger Propagation Delay A, B or Clear to \bar{Q}		25	42	ns
$\mathrm{t}_{\text {PHL }}$	Maximum Propagation Delay Clear to Q		20	31	ns
tpLH	Maximum Propagation Delay Clear to \bar{Q}		22	33	ns
t_{W}	Minimum Pulse Width A, B or Clear		14	26	ns
$\mathrm{t}_{\text {REM }}$	Minimum Clear Removal Time			0	ns
${ }^{\text {t WQ(MIN }}$)	Minimum Output Pulse Width	$\begin{array}{\|l} \hline \mathrm{C}_{\mathrm{EXT}}=28 \mathrm{pF} \\ \mathrm{R}_{\mathrm{EXT}}=2 \mathrm{k} \Omega \\ \hline \end{array}$	400		ns
${ }^{\text {t }}$ WQ	Output Pulse Width	$\begin{aligned} & \mathrm{C}_{\mathrm{EXT}}=1000 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{EXT}}=10 \mathrm{k} \Omega \\ & \hline \end{aligned}$	10		$\mu \mathrm{s}$

AC Electrical Characteristics $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$ (unless otherwise specified)

Symbol	Parameter	Conditions		V_{CC}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{array}{\|c\|c\|} \hline 74 \mathrm{HC} & 54 \mathrm{HC} \\ \mathrm{~T}_{\mathrm{A}}=-40 \text { to } 85^{\circ} \mathrm{C} & \mathrm{~T}_{\mathrm{A}}=-55 \text { to } 125^{\circ} \mathrm{C} \\ \hline \end{array}$		Units	
				Typ	Guaranteed Limits					
$\mathrm{t}_{\text {PLH }}$	Maximum Trigger Propagation Delay A, B or Clear to Q				$\begin{array}{\|l\|} \hline 2.0 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ 6.0 \mathrm{~V} \\ \hline \end{array}$	$\begin{aligned} & 77 \\ & 26 \\ & 21 \\ & \hline \end{aligned}$	$\begin{gathered} 169 \\ 42 \\ 32 \\ \hline \end{gathered}$	$\begin{gathered} 194 \\ 51 \\ 39 \\ \hline \end{gathered}$	$\begin{gathered} 210 \\ 57 \\ 44 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {PHL }}$	Maximum Trigger Propagation Delay A, B or Clear to \bar{Q}			$\begin{array}{\|l\|} \hline 2.0 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ 6.0 \mathrm{~V} \end{array}$	$\begin{aligned} & 88 \\ & 29 \\ & 24 \end{aligned}$	$\begin{gathered} 197 \\ 48 \\ 38 \end{gathered}$	$\begin{gathered} 229 \\ 60 \\ 46 \end{gathered}$	$\begin{gathered} 250 \\ 67 \\ 51 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$ ns	
$\mathrm{t}_{\text {PHL }}$	Maximum Propagation Delay Clear to Q			$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 54 \\ & 23 \\ & 19 \\ & \hline \end{aligned}$	$\begin{gathered} 114 \\ 34 \\ 28 \end{gathered}$	$\begin{gathered} 132 \\ 41 \\ 33 \\ \hline \end{gathered}$	$\begin{aligned} & 143 \\ & 45 \\ & 36 \\ & \hline \end{aligned}$	ns ns ns	
$\mathrm{t}_{\text {PLH }}$	Maximum Propagation Delay Clear to \bar{Q}			$\begin{array}{\|l\|} \hline 2.0 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ 6.0 \mathrm{~V} \\ \hline \end{array}$	$\begin{aligned} & 56 \\ & 25 \\ & 20 \\ & \hline \end{aligned}$	$\begin{array}{\|c} 116 \\ 36 \\ 29 \\ \hline \end{array}$	$\begin{gathered} 135 \\ 42 \\ 34 \\ \hline \end{gathered}$	$\begin{gathered} 147 \\ 46 \\ 37 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$ ns	
tw	Minimum Pulse Width A, B, Clear			$\begin{array}{\|l\|} \hline 2.0 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ 6.0 \mathrm{~V} \\ \hline \end{array}$	$\begin{aligned} & 57 \\ & 17 \\ & 12 \\ & \hline \end{aligned}$	$\begin{array}{\|c} 123 \\ 30 \\ 21 \end{array}$	$\begin{gathered} 144 \\ 37 \\ 27 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 157 \\ & 42 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	
$t_{\text {REM }}$	Minimum Clear Removal Time			$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$	
$\mathrm{t}_{\text {TLH, }} \mathrm{t}_{\text {THL }}$	Maximum Output Rise and Fall Time			$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 30 \\ 8 \\ 7 \end{gathered}$	$\begin{aligned} & 75 \\ & 15 \\ & 13 \\ & \hline \end{aligned}$	$\begin{aligned} & 95 \\ & 19 \\ & 16 \end{aligned}$	$\begin{gathered} 110 \\ 22 \\ 19 \\ \hline \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$	
$t^{\text {W }}$ Q(MIN)	Minimum Output Pulse Width	$\begin{aligned} & \mathrm{C}_{\mathrm{EXT}}=28 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{EXT}}=2 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{EXT}}=6 \mathrm{k} \Omega(\\ & \hline \end{aligned}$		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{array}{\|c} 1.5 \\ 450 \\ 380 \\ \hline \end{array}$				$\begin{aligned} & \mu \mathrm{s} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\text {tw }}$ Q	Output Pulse Width	$\begin{aligned} & \mathrm{C}_{\mathrm{EXT}}=0.1 \mu \mathrm{~F} \\ & \mathrm{R}_{\mathrm{EXT}}=10 \mathrm{k} \Omega \end{aligned}$	Min	5.0 V	1	0.9	0.86	0.85	ms	
			Max	5.0 V	1	1.1	1.14	1.15	ms	
CPD	Power Dissipation Capacitance (Note 5)				87				pF	
C_{IN}	Maximum Input Capacitance (Pins 7 \& 15)				12	20	20	20	pF	
$\mathrm{ClN}_{\text {IN }}$	Maximum Input Capacitance (other inputs)				6	10	10	10	pF	
Note 5: C_{PD} determines the no load dynamic power consumption, $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \mathrm{V}_{\mathrm{CC}}{ }^{2 f}+\mathrm{I}_{\mathrm{CC}} \mathrm{V}_{\mathrm{CC}}$, and the no load dynamic current consumption, $\mathrm{I}_{\mathrm{S}}=\mathrm{C}_{\mathrm{PD}} \mathrm{V}_{\mathrm{CC}}{ }^{\text {d }}+\mathrm{I}_{\mathrm{CC}}$.										

Logic Diagram

TL/F/5325-5
Theory of Operation

TRIGGER OPERATION

As shown in Figure 1 and the logic diagram before an input trigger occurs, the monostable is in the quiescent state with the Q output low, and the timing capacitor $\mathrm{C}_{\mathrm{EXT}}$ completely charged to $V_{C C}$. When the trigger input A goes from $V_{C C}$ to GND (while inputs B and clear are held to V_{CC}) a valid trigger is recognized, which turns on comparator C 1 and N channel transistor N1 (1). At the same time the output latch is set. With transistor N 1 on, the capacitor $\mathrm{C}_{\mathrm{EXT}}$ rapidly discharges toward GND until $\mathrm{V}_{\text {REF1 }}$ is reached. At this point the output of comparator C1 changes state and transistor N1 turns off. Comparator C1 then turns off while at the same time comparator C 2 turns on. With transistor N 1 off, the capacitor $\mathrm{C}_{\mathrm{EXT}}$ begins to charge through the timing resistor, $\mathrm{R}_{\mathrm{EXT}}$, toward V_{CC}. When the voltage across $\mathrm{C}_{\mathrm{EXT}}$ equals $\mathrm{V}_{\text {REF2 }}$, comparator C2 changes state causing the output latch to reset (Q goes low) while at the same time disabling comparator C 2 . This ends the timing cycle with the monostable in the quiescent state, waiting for the next trigger.
A valid trigger is also recognized when trigger input B goes from GND to $V_{C C}$ (while input A is at GND and input clear is at $\left.\mathrm{V}_{\mathrm{CC}}{ }^{(2)}\right)$. The 'HC221 can also be triggered when clear goes from GND to $V_{C C}$ (while A is at Gnd and B is at $\mathrm{V}_{\mathrm{CC}}\left({ }^{(6)}\right)$.

It should be noted that in the quiescent state $\mathrm{C}_{\text {EXT }}$ is fully charged to V_{CC} causing the current through resistor $\mathrm{R}_{\mathrm{EXT}}$ to be zero. Both comparators are "off" with the total device current due only to reverse junction leakages. An added feature of the 'HC221 is that the output latch is set via the input trigger without regard to the capacitor voltage. Thus, propagation delay from trigger to Q is independent of the value of $\mathrm{C}_{\mathrm{EXT}}$, $\mathrm{R}_{\mathrm{EXT}}$, or the duty cycle of the input waveform.
The 'HC221 is non-retriggerable and will ignore input transitions on A and B until it has timed out (3) and (4).

RESET OPERATION

These one shots may be reset during the generation of the output pulse. In the reset mode of operation, an input pulse on clear sets the reset latch and causes the capacitor to be fast charged to V_{CC} by turning on transistor Q1 (5). When the voltage on the capacitor reaches $\mathrm{V}_{\text {REF2 }}$, the reset latch will clear and then be ready to accept another pulse. If the clear input is held low, any trigger inputs that occur will be inhibited and the Q and \bar{Q} outputs of the output latch will not change. Since the Q output is reset when an input low level is detected on the Clear input, the output pulse T can be made significantly shorter than the minimum pulse width specification.

Ceramic Dual-In-Line Package (J)
Order Number MM54HC221AJ or MM74HC221AJ
NS Package Number J16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

