

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
7V
Input Voltage
Operating Free Air Temperature Range
DM54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions $\mathrm{v}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Symbol	Parameter	DM54LS95			DM74LS95			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
IOH	High Level Output Current			-0.4			-0.4	mA
lOL	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time HIGH or LOW Ds or Pn to CPn	$\begin{array}{r} 20 \\ 20 \\ \hline \end{array}$			$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$			ns
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold Time HIGH or LOW Ds or Pn to $\overline{\mathrm{CP}} \mathrm{n}$	$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$			$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$			ns
$t_{w}(H)$	$\overline{\text { CPn Pulse Width HIGH }}$	20			20			ns
$t_{\text {en }}(\mathrm{L})$	Enable Time LOW, PE to $\overline{\mathrm{CP}} 1$	25			25			ns
$\mathrm{t}_{\text {inh }}(\mathrm{H})$	Inhibit Time HIGH, PE to $\overline{\mathrm{CP}} 1$	20			20			ns
$\mathrm{ten}_{\text {(}}(\mathrm{H})$	Enable Time HIGH, PE to $\overline{\mathrm{CP}} 2$	25			25			ns
$\mathrm{t}_{\text {inh }}(\mathrm{L})$	Inhibit Time LOW, PE to $\overline{\mathrm{CP}} 2$	20			20			ns

Functional Description

The '95 is a 4-bit shift register with serial and parallel synchronous operating modes. It has a Serial (DS) and four Parallel (P0-P3) Data inputs and four Parallel Data outputs (Q0-Q3). The serial or parallel mode of operation is controlled by a Parallel Enable input (PE) and two Clock inputs, $\overline{\mathrm{CP}} 1$ and $\overline{\mathrm{CP}} 2$. The serial (right-shift) or parallel data transfers occur synchronous with the HIGH-to-LOW transition of the selected clock input.
When PE is HIGH, $\overline{\mathrm{CP}} 2$ is enabled. A HIGH-to-LOW transition on enabled $\overline{\mathrm{CP}} 2$ transfers parallel data from the P0P3 inputs to the Q0-Q3 outputs. When PE is LOW, CP1 is
enabled. A HIGH-to-LOW transition on enabled CP1 transfers the data from Serial input $\left(D_{S}\right)$ to $Q 0$ and shifts the data in Q0 to Q1, Q1 to Q2, and Q2 to Q3 respectively (rightshift). A left-shift is accomplished by externally connecting Q3 to P2, Q2 to P1, and Q1 to P0, and operating the ' 95 in the parallel mode ($\mathrm{PE}=\mathrm{HIGH}$). For normal operation, PE should only change states when both Clock inputs are LOW. However, changing PE from LOW to HIGH while CP2 is HIGH, or changing PE from HIGH to LOW while $\overline{\mathrm{CP}} 1$ is HIGH and $\overline{\mathrm{CP}} 2$ is LOW will not cause any changes on the register outputs.

Mode Select Table									
Operating Mode	Inputs					Outputs			
	PE	$\overline{\mathrm{CP}} 1$	$\overline{\mathrm{CP}} 2$	$\mathrm{D}_{\text {S }}$	Pn	Q0	Q1	Q2	Q3
Shift	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	\sim	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \text { l } \\ & \text { h } \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { q0 } \\ & \text { q0 } \end{aligned}$	$\begin{aligned} & \text { q1 } \\ & \text { q1 } \end{aligned}$	q2
Parallel Load	H	X	\checkmark	X	pn	p0	p1	p2	p3
Mode Change	־	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \hline \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \text { X } \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	No	hange ange hange termin termin hange termin hange		

I = LOW Voltage Level one set-up time prior to the HIGH-to-LOW clock transition.
$h=$ HIGH Voltage Level one set-up time prior to the HIGH-to-LOW clock transition.
$\mathrm{pn}=$ Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the HIGH-to-LOW clock transition.
H $=$ HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial

FIGURE A

Physical Dimensions inches (millimeters)

14-Lead Ceramic Dual-In-Line Package (J)
Order Number DM54LS95BJ
NS Package Number J14A

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY
NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

