

MM54HC259/MM74HC259 8-Bit Addressable Latch/3-to-8 Line Decoder

General Description

Connection Diagram

This device utilizes advanced silicon-gate CMOS technology to implement an 8-bit addressable latch, designed for general purpose storage applications in digital systems.

The MM54HC259/MM74HC259 has a single data input (D), 8 latch outputs (Q1-Q8), 3 address inputs (A, B, and C), a common enable input (\overline{G}), and a common CLEAR input. To operate this device as an addressable latch, data is held on the D input, and the address of the latch into which the data is to be entered is held on the A, B, and C inputs. When ENABLE is taken low the data flows through to the addressed output. The data is stored when ENABLE transitions from low to high. All unaddressed latches will remain unaffected. With enable in the high state the device is deselected, and all latches remain in their previous state, unaffected by changes on the data or address inputs. To eliminate the possibility of entering erroneous data into the latches, the enable should be held high (inactive) while the address lines are changing.

If enable is held high and CLEAR is taken low all eight latches are cleared to a low state. If enable is low all latches except the addressed latch will be cleared. The addressed latch will instead follow the D input, effectively implementing a 3-to-8 line decoder.

All inputs are protected from damage due to static discharge by diodes to V_{CC} and ground.

Features

- Typical propagation delay: 18 ns
- Wide supply range: 2-6V
- Low input current: 1 µA maximum
- Low quiescent current: 80 µA maximum (74HC Series)

Latch Sele

Dual-In-Line Package								
EN- DATA OUTPUTS								
VCC CLEAR ABLE IN Q7 Q6 Q5 Q4								
16 15 14 13 12 11 10 9								
ACLEAR G D B C 00 01 02 03 04 05 06 07								
1 2 3 4 5 6 7 8								
A B C QO Q1 Q2 Q3 GND								
LATCH SELECT OUTPUTS TL/F/5006-1								
Top View								
Order Number MMEAUCOED or MMZAUCOED								

Order Number MM54HC259 or MM74HC259

Truth Table

Inputs		Outputs of Addressed	Each Other	Function		
Clear	G	Latch	Output	Function		
н	L	D	Q _{i0}	Addressable Latch		
н	н	Q _{i0}	Q _{i0}	Memory		
L	L	D	L	8-Line Decoder		
L	Н	L	L	Clear		

© 1995 National Semiconductor Corporation TL/F/5006

RRD-B30M115/Printed in U. S. A.

election Table								
Sele	ect Inp	outs	Latch					
С	в	Α	Addressed					
L	L	L	0					
L	L	Н	1					
L	н	L	2					
L	н	Н	3					
н	L	L	4					
н	L	н	5					
н	н	L	6					
Н	н	н	7					

H = high level, L = low level

D = the level at the data input

 Q_{i0} the level of $Q_i \ (i=0,\,1\ldots7,\,as$ appropriate) before the indicated steady-state input conditions were established.

MM54HC259/MM74HC259 8-Bit Addressable Latch/3-to-8 Line Decode

January 1988

Absolute Maximum Ratings (Notes 1 & 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

-0.5 to +7.0V

 \pm 20 mA

 $\pm 25 \text{ mA}$

 \pm 50 mA

600 mW

500 mW

260°C

-1.5 to $V_{CC}\!+\!1.5V$

-0.5 to $V_{CC}\!+\!0.5V$

 -65°C to $+150^\circ\text{C}$

Supply Voltage (V_{CC})

DC Input Voltage (VIN)

Power Dissipation (P_D) (Note 3)

S.O. Package only

Lead Temperature (T_L)

(Soldering 10 seconds)

DC Output Voltage (V_{OUT})

Clamp Diode Current (I_{IK}, I_{OK})

DC Output Current, per pin (I_{OUT})

DC V_{CC} or GND Current, per pin (I_{CC})

Storage Temperature Range (T_{STG})

Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage (V _{IN} , V _{OUT})	0	V _{CC}	V
Operating Temp. Range (T _A)			
MM74HC	-40	+85	°C
MM54HC	-55	+ 125	°C
Input Rise or Fall Times			
$(t_r, t_f) V_{CC} = 2.0V$		1000	ns
V _{CC} =4.5V		500	ns
$V_{CC} = 6.0V$		400	ns

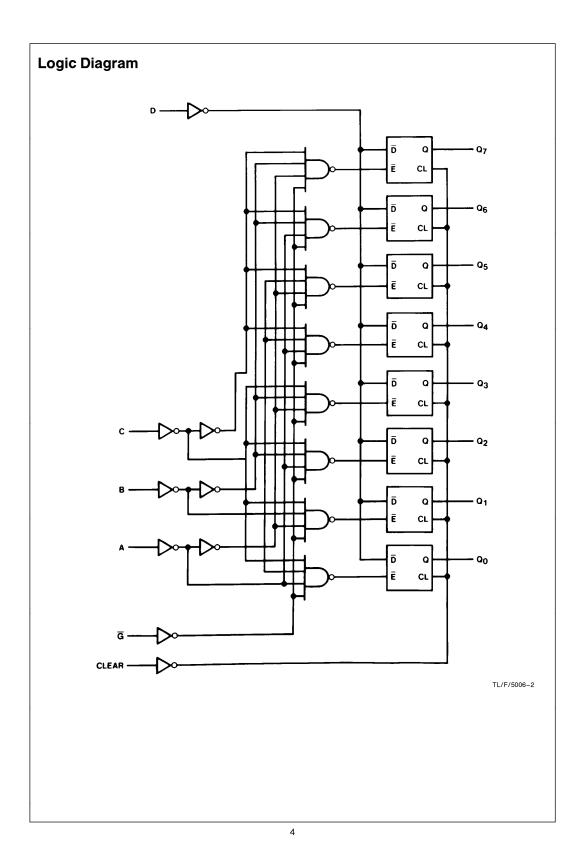
DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	v _{cc}	T _A =25°C		74HC T _A = - 40 to 85°C	54HC T _A = - 55 to 125°C	Units	
				Тур		Guaranteed Limits			
V _{IH}	Minimum High Level Input Voltage		2.0V 4.5V 6.0V		1.5 3.15 4.2	1.5 3.15 4.2	1.5 3.15 4.2	V V V	
V _{IL}	Maximum Low Level Input Voltage**		2.0V 4.5V 6.0V		0.5 1.35 1.8	0.5 1.35 1.8	0.5 1.35 1.8	V V V	
V _{OH}	Minimum High Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \ \mu A$	2.0V 4.5V 6.0V	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V V V	
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 4.0 \text{ mA}$ $ I_{OUT} \le 5.2 \text{ mA}$	4.5V 6.0V	4.2 5.7	3.98 5.48	3.84 5.34	3.7 5.2	V V	
V _{OL}	Maximum Low Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \ \mu A$	2.0V 4.5V 6.0V	0 0 0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V V V	
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 4.0 \text{ mA}$ $ I_{OUT} \le 5.2 \text{ mA}$	4.5V 6.0V	0.2 0.2	0.26 0.26	0.33 0.33	0.4 0.4	v v	
I _{IN}	Maximum Input Current	$V_{IN} = V_{CC}$ or GND	6.0V		±0.1	±1.0	±1.0	μΑ	
ICC	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND $I_{OUT} = 0 \ \mu A$	6.0V		8.0	80	160	μΑ	

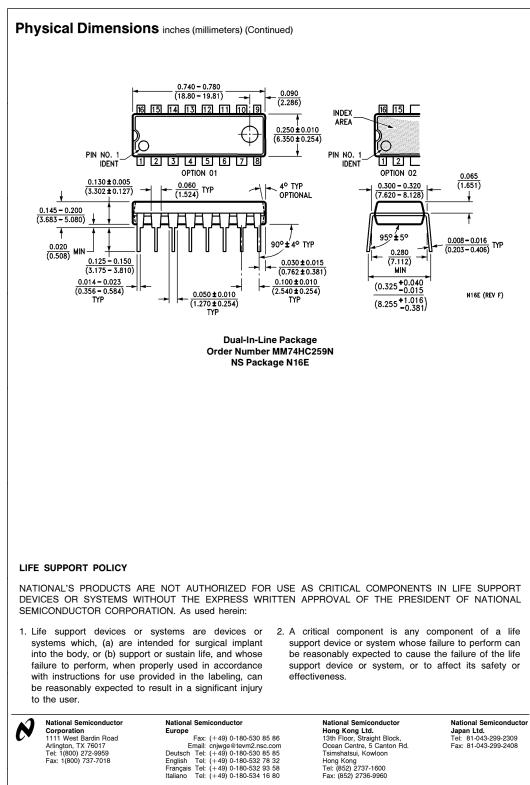
Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: -12 mW"C from 65°C to 85°C; ceramic "J" package: -12 mW"C from 100°C to 125°C. Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC}=5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.


**V_{IL} limits are currently tested at 20% of V_{CC}. The above V_{IL} specification (30% of V_{CC}) will be implemented no later than Q1, CY'89.


Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PHL} , t _{PLH}	Maximum Propagation Delay Data to Output		18	32	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay Select to Output		20	38	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay Enable to Output		20	35	ns
t _{PHL}	Maximum Propagation Delay Clear to Output		17	27	ns
t _W	Minimum Enable Pulse Width		10	16	ns
t _W	Minimum Clear Pulse Width		10	16	ns
t _r , t _f	Maximum Input Rise and Fall Time			500	ns
ts	Minimum Setup Time Select or Data to Enable		15	20	ns
t _H	Minimum Hold Time Data or Address to Enable		-2	0	ns


AC Electrical Characteristics $t_r = t_f = 6 \text{ ns}, C_L = 50 \text{ pF}, V_{CC} = 2.0V - 6.0V$

Symbol	Parameter	Conditions	v _{cc}	T _A =25°C		74HC T _A = - 40 to 85°C	54HC T _A = - 55 to 125°C	Units
				Тур		Guaranteed Limits		1
t _{PHL} , t _{PLH}	Maximum Propagation Delay Data to Output		2.0V 4.5V 6.0V	60 19 17	180 37 32	225 46 40	250 52 45	ns ns ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay Select to Output		2.0V 4.5V 6.0V	72 21 18	220 43 37	275 54 46	310 60 52	ns ns ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay Enable to Output		2.0V 4.5V 6.0V	65 27 23	200 40 35	250 50 44	280 58 50	ns ns ns
t _{PHL}	Maximum Propagation Delay Clear to Output		2.0V 4.5V 6.0V	50 18 16	150 31 26	190 39 32	210 44 37	ns ns ns
t _W	Minimum Pulse Width Clear or Enable		2.0V 4.5V 6.0V		80 16 14	100 20 18	120 24 20	ns ns ns
ts	Minimum Setup Time Address or Data to Enable		2.0V 4.5V 6.0V		100 20 15	125 25 19	150 28 25	ns ns ns
t _H	Minimum Hold Time Address or Data to Enable		2.0V 4.5V 6.0V	-10 -2 -2	0 0 0	0 0 0	0 0 0	ns ns ns
t _{TLH} , t _{THL}	Maximum Output Rise and Fall Time		2.0V 4.5V 6.0V	30 8 7	75 15 13	95 19 16	110 22 19	ns ns ns
C _{IN}	Input Capacitance			5	10	10	10	pF
C _{PD}	Power Dissipation Capacitance (Note 5)	(per package)		80				pF

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} s V_{CC} s f + I_{CC}$.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.