MM54HC181/MM74HC181 Arithmetic Logic Units/Function Generators

General Description

These arithmetic logic units (ALU)/function generators utilize advanced silicon-gate CMOS technology. They possess the high noise immunity and low power consumption of standard CMOS integrated circuits, as well as the ability to drive 10 LS-TTL loads.
The MM54HC181/MM74HC181 are arithmetic logic unit (ALU)/function generators that have a complexity of 75 equivalent gates on a monolithic chip. These circuits perform 16 binary arithmetic operations on two 4-bit words as shown in Tables 1 and 2. These operations are selected by the four function-select lines (S0, S1, S2, S3) and include addition, subtraction, decrement, and straight transfer. When performing arithmetic manipulations, the internal carries must be enabled by applying a low-level voltage to the mode control input (M). A full carry look-ahead scheme is made available in these devices for fast, simultaneous carry generation by means of two cascade-outputs (pins 15 and 17) for the four bits in the package. When used in conjunction with the MM54HC182 or MM74HC182, full carry lookahead circuits, high-speed arithmetic operations can be performed. The method of cascading HC182 circuits with these ALU's to provide multi-level full carry look-ahead is illustrated under typical applications data for the MM54HC182/ MM74HC182.

If high speed is not of importance, a ripple-carry input $\left(C_{n}\right)$ and a ripple-carry output $\left(C_{n}+4\right)$ are available. However, the ripple-carry delay has also been minimized so that arithmetic manipulations for small word lengths can be performed without external circuitry.

Features

- Full look-ahead for high-speed operations on long words
- Arithmetic operating modes:

Addition
Subtraction
Shift operand a one position magnitude comparison
Plus twelve other arithmetic operations

- Logic function modes:

Exclusive-OR
Comparator
AND, NAND, OR, NOR
Plus ten other logic operations

- Wide operating voltage range: $2 \mathrm{~V}-6 \mathrm{~V}$
- Low input current: $1 \mu \mathrm{~A}$ maximum

■ Low quiescent current: $80 \mu \mathrm{~A}$ maximum

Pin Designations

Designation	Pin Nos.	Function
A3, A2, A1, A0	$19,21,23,2$	Word A Inputs
B3, B2, B1, B0	$18,20,22,1$	Word B Inputs
S3, S2, S1, S0	$3,4,5,6$	Function-Select Inputs
C_{n}	7	Inv. Carry Input
M	8	Mode Control Input
F3, F2, F1, F0	$13,11,10,9$	Function Outputs
A $=$ B	14	Comparator Outputs
P	15	Carry Propagate Output
$\mathrm{C}_{\mathrm{n}}+4$	16	Inv. Carry Output
G	17	Carry Generate Output
V_{CC}	24	Supply Voltage GND
12	Ground	

General Description (Continued)
These circuits will accommodate active-high or active-low data, if the pin designations are interpreted as shown below. Subtraction is accomplished by 1's complement addition where the 1's complement of the subtrahend is generated internally. The resultant output is $\mathrm{A}-\mathrm{B}-1$, which requires an end-around or forced carry to produce $\mathrm{A}-\mathrm{B}$.
The 181 can also be utilized as a comparator. The $\mathrm{A}=\mathrm{B}$ output is internally decoded from the function outputs (F0, F1, F2, F3) so that when two words of equal magnitude are applied at the A and B inputs, it will assume a high level to indicate equality $(A=B)$. The ALU should be in the subtract mode with $\mathrm{C}_{\mathrm{n}}=\mathrm{H}$ when performing this comparison. The $\mathrm{A}=\mathrm{B}$ output is open-drain so that it can be wire-AND connected to give a comparison for more than four bits. The carry output $\left(C_{n}+4\right)$ can also be used to supply relative magnitude information. Again, the ALU should be placed in the subtract mode by placing the function select inputs S3, S2, S1, S0 at L, H, H, L, respectively.
These circuits have been designed to not only incorporate all of the designer's requirements for arithmetic operations,
but also to provide 16 possible functions of two Boolean variables without the use of external circuitry. These logic functions are selected by use of the four function-select inputs (S0, S1, S2, S3) with the mode-control input (M) at a high level to disable the internal carry. The 16 logic functions are detailed in Tables 1 and 2 and include exclusiveOR, NAND, AND, NOR, and OR functions.

ALU SIGNAL DESIGNATIONS

The MM54HC181/MM74HC181 can be used with the signal designations of either Figure 1 or Figure 2.
The logic functions and arithmetic operations obtained with signal designations as in Figure 1 are given in Table 1; those obtained with the signal designations of Figure 2 are given in Table 2.
The $54 \mathrm{HC} / 74 \mathrm{HC}$ logic family is speed, function, and pinout compatible with the standard 54LS/74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to V_{CC} and ground.

*Each bit is shifted to the next more significant position.

General Description (Continued)

*Each bit is shifted to the next more significant position.

Number of Bits	Typical Addition Times	Package Count		Carry Method Between ALU's
	Arithmetic/ Logic Units	Look Ahead Carry Generators	None 1 to 4 5 to 8	
9 to 16	30 ns	1	0	Ripple
17 to 64	30 ns	3 or 4	0	1

Absolute Maximum Ratings (Notes 1 \& 2)	
please contact the National Semiconductor Sales Office/Distributors for availability and specifications.	
Supply Voltage (V_{CC})	-0.5 to +7.0 V
DC Input Voltage ($\mathrm{V}_{\text {IN }}$)	-1.5 to $\mathrm{V}_{\mathrm{CC}}+1.5 \mathrm{~V}$
DC Output Voltage (VOUT)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Clamp Diode Current ($\mathrm{I}_{\text {K, }}$, IOK)	$\pm 20 \mathrm{~mA}$
DC Output Current, per pin (lout)	$\pm 25 \mathrm{~mA}$
DC $\mathrm{V}_{\text {CC }}$ or GND Current, per pin (lcC)	$\pm 50 \mathrm{~mA}$
Storage Temperature Range ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation (PD)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (T_{L})	
(Soldering 10 seconds)	$260^{\circ} \mathrm{C}$

Operating Conditions

Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	Min	Max	Units
DC Input or Output Voltage	0	6	V
$\left(\mathrm{~V}_{\text {IN }}, \mathrm{V}_{\mathrm{OUT}}\right)$	V	V_{CC}	V
Operating Temp. Range $\left(\mathrm{T}_{\mathrm{A}}\right)$			
MM74HC	-40	+85	${ }^{\circ} \mathrm{C}$
MM54HC	-55	+125	${ }^{\circ} \mathrm{C}$
Input Rise or Fall Times			
$\left(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\right) \quad \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$		1000	ns
$\quad \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		500	ns
$\quad \mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V}$		400	ns

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	V_{Cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{gathered} 74 \mathrm{HC} \\ \mathrm{~T}_{\mathrm{A}}=-40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 54 \mathrm{HC} \\ \mathrm{~T}_{\mathrm{A}}=-55 \text { to } 125^{\circ} \mathrm{C} \end{gathered}$	Units
				Typ	Guaranteed Limits			
V_{IH}	Minimum High Level Input Voltage		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} 1.5 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} 1.5 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} 1.5 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Maximum Low Level Input Voltage**		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} 0.5 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} 0.5 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} 0.5 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
V_{OH}	Minimum High Level Output Voltage (any output except$A=B)$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \left\|\mathrm{I}_{\mathrm{OUT}}\right\| \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \left\|\mathrm{I}_{\text {OUT }}\right\| \leq 4.0 \mathrm{~mA} \\ & \left\|\mathrm{I}_{\text {OUT }}\right\| \leq 5.2 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4.2 \\ & 5.7 \end{aligned}$	$\begin{aligned} & 3.98 \\ & 5.48 \end{aligned}$	$\begin{aligned} & 3.84 \\ & 5.34 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 5.2 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
${ }_{\text {LKG }}$	Maximum Leakage Open Drain Output Current ($\mathrm{A}=\mathrm{B}$ Output)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} \end{aligned}$	6.0 V		0.5	5.0	10	$\mu \mathrm{A}$
V_{OL}	Maximum Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \left\|\mathrm{I}_{\mathrm{OUT}}\right\| \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \left\|\mathrm{I}_{\text {OUT }}\right\| \leq 4.0 \mathrm{~mA} \\ & \left\|\mathrm{I}_{\text {OUT }}\right\| \leq 5.2 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.33 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
IN	Maximum Input Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND	6.0 V		± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
$I_{C C}$	Maximum Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mu \mathrm{~A} \end{aligned}$	6.0 V		8.0	80	160	$\mu \mathrm{A}$

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.
Note 2: Unless otherwise specified all voltages are referenced to ground.
Note 3: Power Dissipation temperature derating — plastic " N " package: $-12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from $65^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$; ceramic " J " package: $-12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from $100^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
Note 4: For a power supply of $5 \mathrm{~V} \pm 10 \%$ the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5 V . Thus the 4.5 V values should be used when designing with this supply. Worst case $\mathrm{V}_{\mathbb{I H}}$ and $\mathrm{V}_{I L}$ occur at $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ and 4.5 V respectively. (The $\mathrm{V}_{\mathbb{I H}}$ value at 5.5 V is 3.85 V .) The worst case leakage current ($l_{I N}$, $I_{C C}$, and I_{Oz}) occur for CMOS at the higher voltage and so the 6.0 V values should be used.
${ }^{* *} \mathrm{~V}_{\text {IL }}$ limits are currently tested at 20% of V_{CC}. The above $\mathrm{V}_{\text {IL }}$ specification (30% of V_{CC}) will be implemented no later than $\mathrm{Q} 1, \mathrm{CY}$ '89.

AC Electrical Characteristics $\mathrm{v}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$

Symbol	Parameter	Conditions	Typ	Guaranteed Limit	Units
$t_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Maximum Propagation Delay from C_{n} to $\mathrm{C}_{\mathrm{n}}+4$		13	20	ns
$t_{\text {PHL }}$, tPLH	Maximum Propagation Delay from any A or B to $\mathrm{C}_{\mathrm{N}}+4$	$\begin{aligned} & M=0 V, S 0=S 3=V_{C C} \\ & S 1=S 0=0 V \\ & (\overline{S u m} \text { mode }) \end{aligned}$	30	45	ns
$t_{\text {PHL }}, t_{\text {PLH }}$	Maximum Propagation Delay from any A or B to $\mathrm{C}_{\mathrm{N}}+4$	$\begin{aligned} & \mathrm{M}=0 \mathrm{~V}, \mathrm{~S} 0=\mathrm{S} 3=0 \mathrm{~V} \\ & \mathrm{~S} 1=\mathrm{S} 2=\mathrm{V}_{\mathrm{CC}} \\ & (\overline{\text { Diff. }} \text { mode }) \end{aligned}$	30	45	ns
$\mathrm{t}_{\text {PHL }}$, tpLH	Maximum Propagation Delay from C_{n} to any F	$\mathrm{M}=0 \mathrm{~V}$ (Sum or Diff. mode)	20	30	ns
$t_{\text {PHL }}$, tPLH	Maximum Propagation Delay from any A or B to G	$\begin{aligned} & \mathrm{M}=0 \mathrm{~V}, \mathrm{SO}= \\ & \mathrm{S} 3=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~S} 1=\mathrm{S} 2=0 \mathrm{~V} \\ & (\overline{\mathrm{Sum}} \text { mode }) \end{aligned}$	20	30	ns
$t_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Maximum Propagation Delay from any A or B to G	$\begin{aligned} & M=0 \mathrm{~V}, \mathrm{~S} 0= \\ & \mathrm{S} 3=0 \mathrm{~V} \\ & \mathrm{~S} 1=\mathrm{S} 2=\mathrm{V}_{\mathrm{CC}} \\ & (\overline{\text { Diff }} \text { mode }) \end{aligned}$	20	30	ns
$t_{\text {PHL }}$, tPLH	Maximum Propagation Delay from any A or B to P	$\begin{aligned} & \mathrm{M}=0 \mathrm{~V}, \mathrm{~S} 0= \\ & \mathrm{S} 3=\mathrm{V} C \mathrm{C} \\ & \mathrm{~S} 1=\mathrm{S} 2=0 \mathrm{~V} \\ & (\overline{\mathrm{Sum}} \text { mode }) \end{aligned}$	27	41	ns
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Maximum Propagation Delay from any A or B to P	$\begin{aligned} & \mathrm{M}=0 \mathrm{~V}, \mathrm{~S} 0= \\ & \mathrm{S} 3=0 \mathrm{~V} \\ & \mathrm{~S} 1=\mathrm{S} 2=\mathrm{V}_{\mathrm{CC}} \\ & (\overline{\text { Diff }} \text { mode }) \end{aligned}$	24	37	ns
$\mathrm{t}_{\text {PHL }}$, $\mathrm{t}_{\text {PLH }}$	Maximum Propagation Delay from A_{\mid}or B_{\mid}to F_{1}	$\begin{aligned} & \mathrm{M}=0 \mathrm{~V}, \mathrm{~S} 0= \\ & \mathrm{S} 3=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~S} 1=\mathrm{S} 2=0 \mathrm{~V} \end{aligned}$ (Sum mode)	20	30	ns
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Maximum Propagation Delay from A_{l} or B_{\mid}to F_{l}	$\begin{aligned} & \mathrm{M}=0 \mathrm{~V}, \mathrm{~S} 0= \\ & \mathrm{S} 3=0 \mathrm{~V} \\ & \mathrm{~S} 1=\mathrm{S} 2=\mathrm{V}_{\mathrm{CC}} \end{aligned}$ ($\overline{\text { Diff }}$ mode)	19	29	ns
tphL, tPLH	Maximum Propagation Delay from A_{l} or B_{\mid}to F_{l}	$\begin{aligned} & \mathrm{M}=\mathrm{V}_{\mathrm{CC}} \\ & \text { (Logic mode) } \end{aligned}$	25	37	ns
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Maximum Propagation Delay from any A or B to $A=B$	$\begin{aligned} & M=0 \mathrm{~V}, \mathrm{~S} 0= \\ & \mathrm{S} 3=0 \mathrm{~V} \\ & \mathrm{~S} 1=\mathrm{S} 2=\mathrm{V}_{\mathrm{CC}} \\ & (\overline{\text { Diff }} \text { mode }) \end{aligned}$	25	37	ns

AC Electrical Characteristics $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$ (unless otherwise specified)								
Symbol	Parameter	Conditions	Vcc	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{gathered} 74 \mathrm{HC} \\ \mathrm{~T}_{\mathrm{A}}=-40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 54 \mathrm{HC} \\ \mathrm{~T}_{\mathrm{A}}=-55 \text { to } 125^{\circ} \mathrm{C} \\ \hline \end{gathered}$	Units
				Typ		Guaranteed	Limits	
$\mathrm{t}_{\text {PHL }}$, tPLH	Maximum Propagation Delay from C_{n} to $\mathrm{C}_{\mathrm{n}}+4$		$\begin{aligned} & \hline 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} \hline 125 \\ 25 \\ 22 \end{gathered}$	$\begin{aligned} & \hline 155 \\ & 31 \\ & 28 \end{aligned}$	$\begin{gathered} \hline 190 \\ 38 \\ 33 \end{gathered}$	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Maximum Propagation Delay from any A or B to $\mathrm{C}_{\mathrm{n}}+4$	$\begin{aligned} & \hline \mathrm{M}=0 \mathrm{~V}, \mathrm{SO}= \\ & \mathrm{S} 3=\mathrm{V} C \mathrm{C} \\ & \mathrm{~S} 1=\mathrm{S} 2=0 \mathrm{~V} \\ & \text { (Sum mode) } \end{aligned}$	$\begin{aligned} & \hline 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 110 \\ 35 \\ 30 \end{gathered}$	$\begin{gathered} 250 \\ 50 \\ 43 \end{gathered}$	$\begin{gathered} \hline 325 \\ 63 \\ 53 \end{gathered}$	$\begin{aligned} & \hline 375 \\ & 75 \\ & 65 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Maximum Propagation Delay from any A or B to $C_{n}+4$	$\begin{aligned} & \mathrm{M}=0 \mathrm{~V}, \mathrm{~S} 0= \\ & \mathrm{S} 3=0 \mathrm{~V} \\ & \mathrm{~S} 1=\mathrm{S} 2=\mathrm{V}_{\mathrm{CC}} \\ & \text { (Diff mode) } \end{aligned}$	$\begin{aligned} & \hline 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} 250 \\ 50 \\ 43 \end{gathered}$	$\begin{gathered} \hline 325 \\ 63 \\ 53 \end{gathered}$	$\begin{gathered} \hline 375 \\ 75 \\ 65 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Maximum Propagation Delay from C_{n} to any F	$\begin{aligned} & M=0 V \\ & \text { (Sum or } \\ & \text { Diff mode) } \end{aligned}$	$\begin{aligned} & \hline 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 65 \\ & 22 \\ & 14 \end{aligned}$	$\begin{gathered} \hline 150 \\ 32 \\ 28 \end{gathered}$	$\begin{gathered} 190 \\ 40 \\ 35 \end{gathered}$	$\begin{gathered} 225 \\ 48 \\ 42 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Maximum Propagation Delay from any A or B to G	$\begin{aligned} & \hline \mathrm{M}=0 \mathrm{~V}, \mathrm{SO}= \\ & \mathrm{S} 3=\mathrm{VCC} \\ & \mathrm{~S} 1=\mathrm{S} 2=0 \mathrm{~V} \\ & \text { (Sum mode) } \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 70 \\ & 20 \\ & 12 \end{aligned}$	$\begin{gathered} 175 \\ 35 \\ 30 \end{gathered}$	$\begin{gathered} 220 \\ 44 \\ 38 \end{gathered}$	$\begin{gathered} 263 \\ 53 \\ 45 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Maximum Propagation Delay from any A or B to G	$\begin{aligned} & \hline \mathrm{M}=0 \mathrm{~V}, \mathrm{~S} 0= \\ & \mathrm{S} 3=0 \mathrm{~V} \\ & \mathrm{~S} 1=\mathrm{S} 2 \\ & (\text { Diff } \text { mode }) \end{aligned}$	$\begin{aligned} & \hline 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 65 \\ & 23 \\ & 16 \end{aligned}$	$\begin{gathered} 165 \\ 33 \\ 29 \end{gathered}$	$\begin{gathered} \hline 210 \\ 42 \\ 37 \end{gathered}$	$\begin{gathered} 250 \\ 50 \\ 44 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Maximum Propagation Delay from any A or B to P	$\begin{aligned} & M=0 V, S 0= \\ & S 3=V C C \\ & S 1=S 2=0 V \\ & \text { (Sum mode) } \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 80 \\ & 30 \\ & 25 \end{aligned}$	$\begin{gathered} 220 \\ 44 \\ 37 \end{gathered}$	$\begin{gathered} 275 \\ 55 \\ 47 \end{gathered}$	$\begin{gathered} 330 \\ 66 \\ 56 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Maximum Propagation Delay from any A or B to P	$\begin{aligned} & \begin{array}{l} M=O V, S 0= \\ S 3=O V \\ S 1=S 2= \\ C C \\ \text { (Diff mode) } \end{array} \end{aligned}$	$\begin{aligned} & \hline 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 75 \\ & 27 \\ & 24 \end{aligned}$	$\begin{gathered} 195 \\ 39 \\ 34 \end{gathered}$	$\begin{gathered} \hline 244 \\ 49 \\ 43 \end{gathered}$	$\begin{gathered} 293 \\ 60 \\ 51 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
${ }_{\text {tPHL }}, \mathrm{t}_{\text {PLH }}$	Maximum Propagation Delay from A_{l} or B_{\mid}to F_{I}	$\begin{aligned} & M=0 V, S 0= \\ & S 3=V C C \\ & S 1=S 2=0 V \\ & \text { (Sum mode) } \end{aligned}$	$\begin{aligned} & \hline 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 70 \\ & 26 \\ & 21 \end{aligned}$	$\begin{gathered} \hline 180 \\ 36 \\ 31 \end{gathered}$	$\begin{gathered} 225 \\ 45 \\ 39 \end{gathered}$	$\begin{gathered} \hline 270 \\ 54 \\ 47 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Maximum Propagation Delay from A_{l} or B_{\mid}to F_{l}	$\begin{aligned} & \mathrm{M}=0 \mathrm{~V}, \mathrm{~S} 0= \\ & \mathrm{S} 3=0 \mathrm{~V} \\ & \mathrm{~S} 1=\mathrm{S} 2=\mathrm{V}_{\mathrm{CC}} \\ & (\overline{\text { Diff mode }} \text {) } \end{aligned}$	$\begin{aligned} & \hline 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} \hline 160 \\ 32 \\ 27 \end{gathered}$	$\begin{gathered} \hline 200 \\ 40 \\ 34 \end{gathered}$	$\begin{gathered} 290 \\ 48 \\ 41 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Maximum Propagation Delay from A_{l} or B_{\mid}to F_{1}	$\begin{aligned} & \hline \mathrm{M}=\mathrm{V}_{\mathrm{CC}} \\ & \text { (Logic mode) } \end{aligned}$	$\begin{aligned} & \hline 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{array}{c\|} \hline 180 \\ 30 \\ 23 \\ \hline \end{array}$	$\begin{gathered} 200 \\ 40 \\ 34 \end{gathered}$	$\begin{gathered} 250 \\ 50 \\ 43 \\ \hline \end{gathered}$	$\begin{gathered} 300 \\ 60 \\ 51 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Maximum Propagation Delay from any A or B to $A=B$	$\begin{aligned} & \mathrm{M}=\mathrm{OV}, \mathrm{~S} 0= \\ & \mathrm{S} 3=\mathrm{OV} \\ & \mathrm{~S} 1=\mathrm{S} 2=\mathrm{V}_{\mathrm{CC}} \end{aligned}$ ($\overline{\text { Diff }}$ mode)	$\begin{aligned} & \hline 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline 180 \\ 30 \\ 23 \end{gathered}$	$\begin{gathered} 200 \\ 40 \\ 34 \end{gathered}$	$\begin{gathered} \hline 250 \\ 50 \\ 43 \end{gathered}$	$\begin{gathered} \hline 300 \\ 60 \\ 51 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {TLH }}, \mathrm{t}_{\text {THL }}$	Maximum Output Rise and Fall Time		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 30 \\ 8 \\ 7 \end{gathered}$	$\begin{aligned} & 75 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 95 \\ & 19 \\ & 16 \end{aligned}$	$\begin{gathered} 110 \\ 22 \\ 19 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (Note 5)			300				pF
$\mathrm{C}_{\text {IN }}$	Maximum Input Capacitance			5	15	15	15	pF
Note 5: $\mathrm{C}_{P D}$ determines the no load dynamic power consumption, $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{P D} \mathrm{~V}_{C C}{ }^{2} f+\mathrm{I}_{C C} \mathrm{~V}_{C C}$, and the no load dynamic current consumption, $\mathrm{I}_{S}=\mathrm{C}_{P D} \mathrm{~V}_{C C} f+\mathrm{I}_{C C}$.								

Parameter Measurement Information

Parameter	Input Under Test	Other Input Same Bit		Other Data Inputs		Output Under Test	Output Waveform
		Apply V_{CC}	Apply GND	Apply $V_{C C}$	Apply GND		
$t_{\text {PHL }}$, tPLH	A_{1}	B_{1}	None	None	Remaining A and B, C_{n}	F_{1}	Out-of-Phase
$t_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	B_{1}	A_{1}	None	None	Remaining A and B, C_{n}	F_{1}	Out-of-Phase
SUM Mode Test Table		unction Inputs: $\mathbf{S 0}=\mathbf{S 3}=\mathbf{V}_{\mathbf{C C}} \quad \mathbf{S 1}=\mathbf{S 2}=\mathbf{M}=\mathbf{0} \mathbf{V}$					
Parameter	Input Under Test	Other Input Same Bit		Other Data Inputs		Output Under Test	Output Waveform
		Apply $V_{C C}$	Apply GND	Apply \mathbf{V}_{CC}	Apply GND		
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	A_{1}	B_{1}	None	Remaining A and B	C_{n}	F_{1}	In-Phase
${ }^{\text {P }}$ PHL,$t_{\text {PLH }}$	B_{1}	A_{1}	None	Remaining A and B	C_{n}	F_{1}	In-Phase
$\mathrm{tPHL}^{\text {, }}$ tPLH	A_{1}	B_{1}	None	None	Remaining A and B, C_{n}	P	In-Phase
$t_{\text {PHL }}$, tPLH	B_{1}	A_{1}	None	None	Remaining A and $\mathrm{B}, \mathrm{C}_{\mathrm{n}}$	P	In-Phase
${ }_{\text {tPHL }}$, tPLH	A_{1}	None	B_{1}	$\begin{gathered} \text { Remaining } \\ B \end{gathered}$	$\begin{gathered} \text { Remaining } \\ \mathrm{A}, \mathrm{C}_{\mathrm{n}} \end{gathered}$	G	In-Phase
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	B_{1}	None	A_{1}	$\begin{gathered} \text { Remaining } \\ \text { R } \end{gathered}$	Remaining A, C_{n}	G	In-Phase
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	C_{n}	None	None	All	$\begin{gathered} \hline \text { All } \\ \text { B } \end{gathered}$	Any F or $\mathrm{C}_{\mathrm{n}}+4$	In-Phase
$\mathrm{t}_{\text {PHL }}, \mathrm{tPLH}$	A_{1}	None	B_{1}	$\begin{gathered} \text { Remaining } \\ \text { B } \end{gathered}$	Remaining $\mathrm{A}, \mathrm{C}_{\mathrm{n}}$	$\mathrm{C}_{\mathrm{n}}+4$	Out-of-Phase
$\mathrm{t}_{\text {PHL }}$, tPLH	B_{1}	None	A_{1}	$\begin{gathered} \text { Remaining } \\ B \end{gathered}$	$\begin{gathered} \text { Remaining } \\ A, C_{n} \end{gathered}$	$\mathrm{C}_{\mathrm{n}}+4$	Out-of-Phase
$\overline{\text { Diff Mode Test Table }}$		unction Inputs: $\mathbf{S 1}=\mathbf{S 2}=\mathbf{V}_{\mathbf{C C}}, \mathbf{S 0}=\mathbf{S 3}=\mathbf{M}=\mathbf{0} \mathbf{V}$					
Parameter	Input Under Test	Other Input Same Bit		Other Data Inputs		Output Under Test	Output Waveform
		Apply VCC	Apply GND	Apply $V_{\text {CC }}$	Apply GND		
tPHL $^{\text {, }}$ PLH	A_{1}	None	B_{1}	$\begin{gathered} \text { Remaining } \\ \text { A } \\ \hline \end{gathered}$	$\begin{gathered} \text { Remaining } \\ B, C_{n} \\ \hline \end{gathered}$	F_{1}	In-Phase
tpHL $^{\text {, }}$ PLL	B_{1}	A_{1}	None	Remaining A	Remaining $\mathrm{B}, \mathrm{C}_{\mathrm{n}}$	F_{1}	Out-of-Phase
${ }_{\text {tPHL }}$, tPLH	A_{1}	None	B_{1}	None	Remaining A and B, C_{n}	P	In-Phase
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	B_{1}	A_{1}	None	None	Remaining A and B, C_{n}	P	Out-of-Phase
${ }_{\text {tPHL }}, \mathrm{t}_{\text {PLH }}$	A_{1}	B_{1}	None	None	Remaining A and B, C_{n}	G	In-Phase
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	B_{1}	None	A_{1}	None	Remaining A and B, C_{n}	G	Out-of-Phase
tpHL $^{\text {, }}$ tPLH	A_{1}	None	B_{1}	Remaining A	Remaining B, C_{n}	$A=B$	In-Phase
$\mathrm{tPHL}^{\text {, }}$ tPLH	B_{1}	A_{1}	None	$\begin{gathered} \text { Remaining } \\ \mathrm{A} \\ \hline \end{gathered}$	$\begin{gathered} \text { Remaining } \\ B, C_{n} \\ \hline \end{gathered}$	$A=B$	Out-of-Phase
${ }_{\text {tPHL }}$, tPLH	C_{n}	None	None	$\begin{gathered} \text { All } \\ A \text { and } B \end{gathered}$	None	$\begin{gathered} \mathrm{C}_{\mathrm{n}}+4 \\ \text { or any } \mathrm{F} \end{gathered}$	In-Phase
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	A_{1}	B_{1}	None	None	Remaining $\mathrm{A}, \mathrm{B}, \mathrm{C}_{\mathrm{n}}$	$\mathrm{C}_{\mathrm{n}}+4$	Out-of-Phase
${ }_{\text {tPHL }}, \mathrm{t}_{\text {PLH }}$	B_{1}	None	A_{1}	None	Remaining $\mathrm{A}, \mathrm{B}, \mathrm{C}_{\mathrm{n}}$	$\mathrm{C}_{\mathrm{n}}+4$	In-Phase

Logic Diagram

TL/F/5320-4

MM54HC181/MM74HC181 Arithmetic Logic Units/Function Generators
Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY
 NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

 SEMICONDUCTOR CORPORATION. As used herein:1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

