

Absolute Maximum Ratings (Notes 1 \& 2) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.	
Supply Voltage (V_{CC})	-0.5 V to
DC Input Voltage ($\mathrm{V}_{\text {IN }}$)	-1.5 V to $\mathrm{V}_{\mathrm{CC}}+$
Output Voltage (VOUT)	-0.5 V to V_{CC}
Clamp Diode Current ($\mathrm{I}_{\text {K, }}$, $\mathrm{l}_{\text {OK }}$)	
Output Current, per pin (lout)	
DC V ${ }_{\text {CC }}$ or GND Current, per pin (lcC)	± 5
Storage Temperature Range ($\mathrm{T}_{\text {STG }}$)	C to
Power Dissipation (PD)	
S.O. Package only	
10	

Operating Conditions

Min	Max	Units	
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	2	6	V
DC Input or Output Voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
$\left(\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}\right)$			

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	Vcc	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{gathered} 74 \mathrm{HC} \\ \mathrm{~T}_{\mathrm{A}}=-40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 54 \mathrm{HC} \\ \mathrm{~T}_{\mathrm{A}}=-55 \text { to } 125^{\circ} \mathrm{C} \end{gathered}$	Units
				Typ	Guaranteed Limits			
V_{IH}	Minimum High Level Input Voltage		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} 1.5 \\ 3.15 \\ 4.2 \\ \hline \end{gathered}$	$\begin{gathered} 1.5 \\ 3.15 \\ 4.2 \\ \hline \end{gathered}$	$\begin{gathered} 1.5 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
VIL	Maximum Low Level Input Voltage		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & 0.3 \\ & 0.9 \\ & 1.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.9 \\ & 1.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.9 \\ & 1.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
V_{OH}	Minimum High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \left\|\mathrm{I}_{\text {OUT }}\right\| \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mid \mathrm{IOUT} \leq 4.0 \mathrm{~mA} \\ & \left\|\mathrm{I}_{\text {OUT }}\right\| \leq 5.2 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 3.96 \\ & 5.46 \end{aligned}$	$\begin{aligned} & 3.84 \\ & 5.34 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 5.2 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \\ & \text { V } \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Maximum Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \left\|\mathrm{I}_{\text {OUT }}\right\| \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \left\|\mathrm{I}_{\mathrm{OUT}}\right\| \leq 4 \mathrm{~mA} \\ & \left\|\mathrm{I}_{\mathrm{OUT}}\right\| \leq 5.2 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.26 \\ & 0.26 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.33 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
I_{IN}	Maximum Input Current (Pins 7, 15)	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND	5.0 V		0.5	5.0	5.0	$\mu \mathrm{A}$
I_{IN}	Maximum Input Current (all other pins)	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND	6.0 V		± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
ICC	Maximum Quiescent Supply Current (standby)	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mu \mathrm{~A} \end{aligned}$	6.0 V		8.0	80	160	$\mu \mathrm{A}$
${ }^{\text {ICC }}$	Maximum Active Supply Current (per monostable)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{R} / \mathrm{C}_{\mathrm{EXT}}=0.5 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 36 \\ 0.33 \\ 0.7 \\ \hline \end{gathered}$	$\begin{array}{r} 80 \\ 1.0 \\ 2.0 \\ \hline \end{array}$	$\begin{array}{r} 110 \\ 1.3 \\ 2.6 \\ \hline \end{array}$	$\begin{array}{r} 130 \\ 1.6 \\ 3.2 \\ \hline \end{array}$	$\mu \mathrm{A}$ mA mA

Note 1: Maximum Ratings are those values beyond which damage to the device may occur.
Note 2: Unless otherwise specified all voltages are referenced to ground.
Note 3: Power Dissipation Temperature Derating: Plastic " N " Package: $-12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from $65^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Ceramic " J " Package: $-12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from $100^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Note 4: For a power supply of $5 \mathrm{~V} \pm 10 \%$ the worst-case output voltages ($\mathrm{V}_{\mathrm{OH}}, \mathrm{V}_{\mathrm{OL}}$) occur for HC at 4.5 V . Thus the 4.5 V values should be used when designing with this supply. Worst-case $\mathrm{V}_{\mathbb{I H}}$ and $\mathrm{V}_{I L}$ occur at $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ and 4.5 V respectively. (The $\mathrm{V}_{\mathbb{I H}}$ value at 5.5 V is 3.85 V .) The worst-case leakage current (liN, I_{CC}, and l_{O}) occur for CMOS at the higher voltage and so the 6.0 V values should be used.

AC Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$

Symbol	Parameter	Conditions	Typ	Limit	Units
${ }_{\text {tPLH }}$	Maximum Trigger Propagation Delay, A, B to Q		22	33	ns
$\mathrm{t}_{\text {PHL }}$	Maximum Trigger Propagation Delay, A, B to Q		25	42	ns
$\mathrm{t}_{\text {PHL }}$	Maximum Propagation Delay, Clear to Q		20	27	ns
${ }_{\text {tplH }}$	Maximum Propagation Delay, Clear to \bar{Q}		22	33	ns
t_{W}	Minimum Pulse Width, A, B or Clear		14	26	ns
$t_{\text {REM }}$	Minimum Clear Removal Time			0	ns
${ }^{\text {t W W (MIN }}$)	Minimum Output Pulse Width	$\begin{aligned} & \mathrm{C}_{\mathrm{EXT}}=28 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{EXT}}=2 \mathrm{k} \Omega \end{aligned}$	400		ns
${ }^{\text {t }}$ Q Q	Output Pulse Width	$\begin{aligned} & \mathrm{C}_{\mathrm{EXT}}=1000 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{EXT}}=10 \mathrm{k} \Omega \end{aligned}$	10		$\mu \mathrm{s}$

AC Electrical Characteristics $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$ (Unless otherwise specified)

Symbol	Parameter	Conditions		Vcc	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{gathered} 74 \mathrm{HC} \\ \mathrm{~T}_{\mathrm{A}}=-40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 54 \mathrm{HC} \\ \mathrm{~T}_{\mathrm{A}}=-55 \text { to } 125^{\circ} \mathrm{C} \end{gathered}$	Units	
				Typ	Guaranteed Limits					
$\mathrm{t}_{\text {PLH }}$	Maximum Trigger Propagation Delay, A or B to Q				$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 77 \\ & 26 \\ & 21 \end{aligned}$	$\begin{aligned} & 169 \\ & 42 \\ & 32 \end{aligned}$	$\begin{gathered} 194 \\ 51 \\ 39 \end{gathered}$	$\begin{gathered} 210 \\ 57 \\ 44 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
${ }_{\text {tPHL }}$	Maximum Trigger Propagation Delay, A or B to \bar{Q}			$\begin{aligned} & \hline 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 88 \\ & 29 \\ & 24 \end{aligned}$	$\begin{gathered} \hline 197 \\ 48 \\ 38 \end{gathered}$	$\begin{gathered} \hline 229 \\ 60 \\ 46 \end{gathered}$	$\begin{gathered} \hline 250 \\ 67 \\ 51 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	
$\mathrm{t}_{\text {PHL }}$	Maximum Propagation Delay, Clear to Q			$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 54 \\ & 23 \\ & 19 \end{aligned}$	$\begin{gathered} 114 \\ 34 \\ 28 \end{gathered}$	$\begin{aligned} & 132 \\ & 41 \\ & 33 \end{aligned}$	$\begin{gathered} 143 \\ 45 \\ 36 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	
$\mathrm{t}_{\text {PLH }}$	Maximum Propagation Delay, Clear to \bar{Q}			$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 56 \\ & 25 \\ & 20 \end{aligned}$	$\begin{gathered} 116 \\ 36 \\ 29 \end{gathered}$	$\begin{gathered} 135 \\ 42 \\ 34 \end{gathered}$	$\begin{gathered} \hline 147 \\ 46 \\ 37 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	
t_{W}	Minimum Pulse Width A, B, Clear			$\begin{aligned} & \hline 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 57 \\ & 17 \\ & 12 \end{aligned}$	$\begin{gathered} 123 \\ 30 \\ 21 \end{gathered}$	$\begin{gathered} \hline 144 \\ 37 \\ 27 \end{gathered}$	$\begin{gathered} 157 \\ 42 \\ 30 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$	
$t_{\text {REM }}$	Minimum Clear Removal Time			$\begin{aligned} & \hline 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	
twQ	Output Pulse Width	$\begin{aligned} & \mathrm{C}_{E X T}=0.1 \mu \mathrm{~F} \\ & \mathrm{R}_{\mathrm{EXT}}=10 \mathrm{k} \Omega \end{aligned}$	Min	5.0 V	1	0.9	0.86	0.85	ms	
			Max	5.0 V	1	1.1	1.14	1.15	ms	
$\mathrm{t}_{\text {TLH, }} \mathrm{t}_{\text {THL }}$	Maximum Output Rise and Fall Time			$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 30 \\ 8 \\ 7 \end{gathered}$	$\begin{aligned} & 75 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 95 \\ & 19 \\ & 16 \end{aligned}$	$\begin{gathered} \hline 110 \\ 22 \\ 19 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (Note 5)				83				pF	
$\mathrm{Cl}_{\text {IN }}$	Maximum Input Capacitance (Pins 7 \& 15)				12	20	20	20	pF	
$\mathrm{Cl}_{\text {IN }}$	Maximum Input Capacitance (other inputs)				6	10	10	10	pF	

Note 5: $C_{P D}$ determines the no load dynamic power consumption, $P_{D}=C_{P D} V_{C C}{ }^{2} f+I_{C C} V_{C C}$, and the no load dynamic current consumption, $I_{S}=C_{P D} V_{C C} f+$ ${ }^{\mathrm{I} C \mathrm{C}}$.

Logic Diagram

TL/F/5338-5

Theory of Operation

(1) Positive edge trigger
(1) NEGATIVE EDGE TRIGGER
(1) POSITIVE EDGE TRIGGER
 (3) RESET PULSE SHORTENING

Theory of Operation (Continued)

TRIGGER OPERATION

As shown in Figure 1 and the logic diagram before an input trigger occurs, the one-shot is in the quiescent state with the Q output low, and the timing capacitor $\mathrm{C}_{\mathrm{EXT}}$ completely charged to V_{CC}. When the trigger input A goes from V_{CC} to GND (while inputs B and clear are held to V_{CC}) a valid trigger is recognized, which turns on comparator C 1 and N Channel transistor N1 (1). At the same time the output latch is set. With transistor N 1 on, the capacitor $\mathrm{C}_{\text {EXT }}$ rapidly discharges toward GND until $\mathrm{V}_{\text {REF1 }}$ is reached. At this point the output of comparator C 1 changes state and transistor N1 turns off. Comparator C1 then turns off while at the same time comparator C2 turns on. With transistor N1 off, the capacitor $\mathrm{C}_{\text {EXT }}$ begins to charge through the timing resistor, $R_{E X T}$, toward V_{CC}. When the voltage across $\mathrm{C}_{\mathrm{EXT}}$ equals $\mathrm{V}_{\text {REF2 }}$, comparator C2 changes state causing the output latch to reset (Q goes low) while at the same time disabling comparator C 2 . This ends the timing cycle with the one-shot in the quiescent state, waiting for the next trigger. A valid trigger is also recognized when trigger input B goes from GND to $V_{C C}$ (while input A is at GND and input clear is at $\mathrm{V}_{\mathrm{CC}}{ }^{(2)}$.)
It should be noted that in the quiescent state $\mathrm{C}_{E X T}$ is fully charged to V_{CC} causing the current through resistor $\mathrm{R}_{E X T}$ to be zero. Both comparators are "off" with the total device current due only to reverse junction leakages. An added feature of the 'HC423A is that the output latch is set via the input trigger without regard to the capacitor voltage. Thus, propagation delay from trigger to Q is independent of the value of $\mathrm{C}_{\mathrm{EXT}}$, $\mathrm{R}_{\mathrm{EXT}}$, or the duty cycle of the input waveform.

RETRIGGER OPERATION

The 'HC423A is retriggered if a valid trigger occurs (3) followed by another trigger (4) before the Q output has returned to the quiescent (zero) state. Any retrigger, after the
timing node voltage at pin or has begun to rise from $\mathrm{V}_{\text {REF1 }}$, but has not yet reached $\mathrm{V}_{\text {REF2 }}$, will cause an increase in output pulse width T . When a valid retrigger is initiated (4), the voltage at the $R / C_{E X T}$ pin will again drop to $\mathrm{V}_{\text {REF } 1}$ before progressing along the RC charging curve toward V_{CC}. The Q output will remain high until time T, after the last valid retrigger.
Because the trigger-control circuit flip-flop resets shortly after C_{X} has discharged to the reference voltage of the lower reference circuit, the minimum retrigger time, $\mathrm{t}_{\text {rr }}$ is a function of internal propagation delays and the discharge time of C_{χ} :

$$
\mathrm{t}_{\mathrm{rr}}=20+\frac{187}{\mathrm{~V}_{\mathrm{CC}}-0.7}+\frac{565+\left(0.256 \mathrm{~V}_{\mathrm{CC}}\right) \mathrm{C}_{\mathrm{X}}}{\left(\mathrm{~V}_{\mathrm{CC}}-0.7\right)^{2}} \mathrm{~ns}
$$

Another removal/retrigger time occurs when a short clear pulse is used. Upon receipt of a clear, the one shot must charge the capacitor up to the upper trip point before the one shot is ready to receive the next trigger. This time is dependent on the capacitor used and is approximately:

$$
t_{\mathrm{rr}}=196+\frac{640}{V_{\mathrm{CC}}-0.7}+\frac{522+\left(0.3 \mathrm{~V}_{\mathrm{CC}}\right) C_{X}}{\left(\mathrm{~V}_{\mathrm{CC}}-0.7\right)^{2}} \mathrm{~ns}
$$

RESET OPERATION

These one shots may be reset during the generation of the output pulse. In the reset mode of operation, an input pulse on clear sets the reset latch and causes the capacitor to be fast charged to V_{CC} by turning on transistor Q1 (5). When the voltage on the capacitor reaches $\mathrm{V}_{\text {REF2 }}$, the reset latch will clear and then be ready to accept another pulse. If the clear input is held low, any trigger inputs that occur will be inhibited and the Q and \bar{Q} outputs of the output latch will not change. Since the Q output is reset when an input low level is detected on the Clear input, the output pulse T can be made significantly shorter than the minimum pulse width specification.

Theory of Operation (Continued)

MM54HC423A/MM74HC423A Dual Retriggerable Monostable Multivibrator

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

