

54LS173/DM74LS173A TRI-STATE® 4-Bit D-Type Register

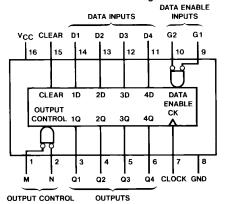
General Description

This four-bit register contains D-type flip-flops with totempole TRI-STATE® outputs, capable of driving highly capacitive or low-impedance loads. The high-impedance state and increased high-logic-level drive provide these flip-flops with the capability of driving the bus lines in a bus-organized system without need for interface or pull-up components.

Gated enable inputs are provided for controlling the entry of data into the flip-flops. When both data-enable inputs are low, data at the D inputs are loaded into their respective flip-flops on the next positive transition of the buffered clock input. Gate output control inputs are also provided. When both are low, the normal logic states of the four outputs are available for driving the loads or bus lines. The outputs are disabled independently from the level of the clock by a high logic level at either output control input. The outputs then present a high impedance and neither load nor drive the bus line. Detailed operation is given in the truth table.

To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the output control circuitry is designed so that the average output disable times are shorter than the average output enable times.

Features


- TRI-STATE outputs interface directly with system bus
- Gated output control lines for enabling or disabling the outputs
- Fully independent clock eliminates restrictions for operating in one of two modes:

Parallel load Do nothing (hold)

■ For application as bus buffer registers

Connection Diagram

Dual-In-Line Package

TL/F/6403-1

Order Number 54LS173DMQB, 54LS173FMQB, 54LS173LMQB, DM74LS173AM or DM74LS173AN See NS Package Number E20A, J16A, M16A, N16E or W16A

Function Table

		Inputs			
Clear	Clock		ata able	Data	Output Q
		G1	G2	D	
Н	Х	Х	Х	Х	L
L	L	Х	X	Χ	Q_0
L	↑	Н	Х	Χ	Q_0
L	↑	Х	Н	X	Q_0
L	↑	L	L	L	L
L	↑	L	L	Н	Н

When either M or N (or both) is (are) high the output is disabled to the high-impedance state; however, sequential operation of the flip-flops is not affected.

- H = High Level (Steady State)
- L = Low Level (Steady State)
- ↑ = Low-to-High Level Transition
- X = Don't Care (Any Input Including Transitions)

 $\mathbf{Q}_0 = \mathsf{The} \ \mathsf{Level} \ \mathsf{of} \ \mathsf{Q} \ \mathsf{Before} \ \mathsf{the} \ \mathsf{Indicated} \ \mathsf{Steady} \ \mathsf{State} \ \mathsf{Input} \ \mathsf{Conditions} \ \mathsf{Were} \ \mathsf{Established}.$

TRI-STATE® is a registered trademark of National Semiconductor Corporation

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage Input Voltage 7V Operating Free Air Temperature Range

-55°C to +125°C DM74LS 0°C to +70°C

54LS

-65°C to +150°C Storage Temperature Range

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		54LS173			DM74LS173A			Units
Symbol			Min	Nom	Max	Min	Nom	Max	Oills
V _{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage		2			2			V
V _{IL}	Low Level Input Voltage				0.7			0.8	V
Іон	High Level Output Current				-1			-2.6	mA
l _{OL}	Low Level Output Current				12			24	mA
f _{CLK}	Clock Frequency (Note 1)		30			0		30	MHz
	Clock Frequency (Note 2)					0		20	MHz
t _W	y Pulse Width	Clock	20			17			ns
	(Note 3)	Clear	17			17			
t _{SU}	Setup Time	Enable	17			23			ns
	(Note 3)	Data	15			15			
t _H	Hold Time	Enable	0			0			ns
	(Note 3)	Data	5			0			
t _{REL}	Clear Release Time		10			10			ns
T _A	Free Air Operating Temperature		-55		125	0		70	°C

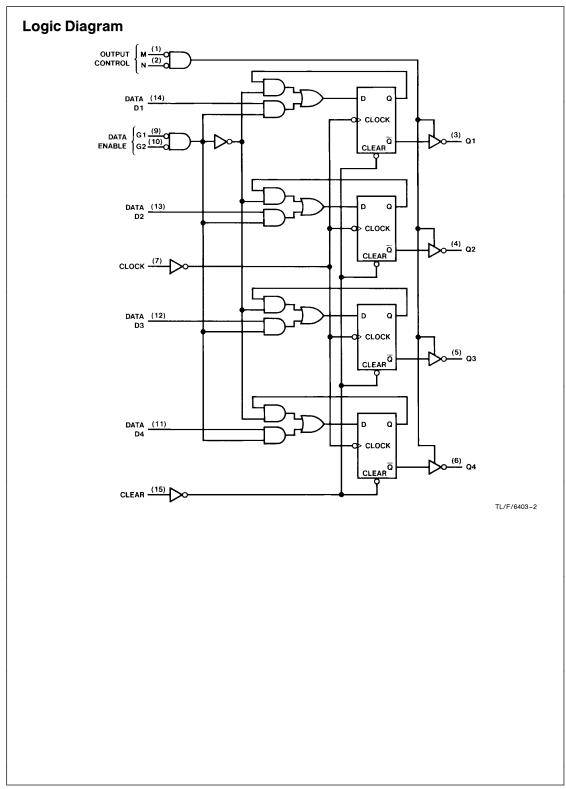
Note 1: $C_L=45$ pF, $R_L=667\Omega$, $T_A=25^{\circ}C$ and $V_{CC}=5V$. Note 2: $C_L=150$ pF, $R_L=667\Omega$, $T_A=25^{\circ}C$ and $V_{CC}=5V$.

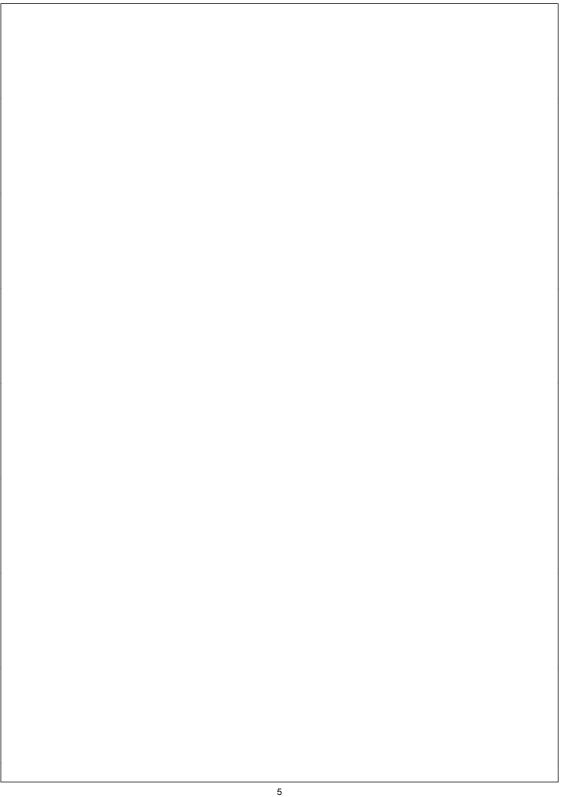
Note 3: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

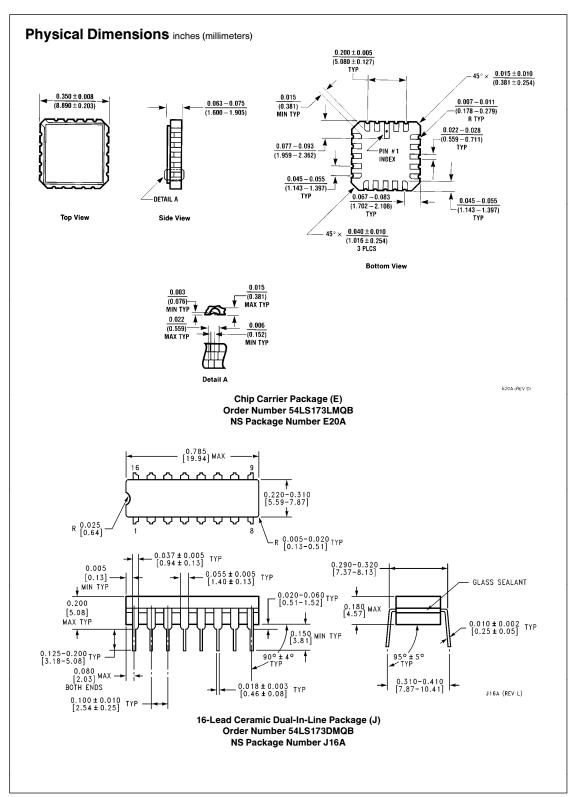
Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 4)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				-1.5	V
V _{OH}	High Level Output Voltage	$V_{CC} = Min, I_{OH} = Max$ $V_{IL} = Max, V_{IH} = Min$		2.4			V
V _{OL}	Low Level Output	$V_{CC} = Min, I_{OL} = Max$	54LS			0.4	V
	Voltage	$V_{IL} = Max, V_{IH} = Min$	DM74		0.35	0.5	
		$I_{OL} = 4 \text{ mA}, V_{CC} = Min$	DM74		0.25	0.4	
II	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 7V$				0.1	mA
I _{IH}	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$				20	μΑ
I _{IL}	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$				-0.4	mA
I _{OZH}	Off-State Output Current with High Level Output Voltage Applied	$V_{CC} = Max, V_O = 2.7V$ $V_{IH} = Min, V_{IL} = Max$				20	μΑ
I _{OZL}	Off-State Output Current with Low Level Output Voltage Applied	$V_{CC} = Max, V_O = 0.4V$ $V_{IH} = Min, V_{IL} = Max$				-20	μΑ
los	Short Circuit	V _{CC} = Max	54LS	-20		-100	mA
	Output Current	(Note 5) DM74		-20		-100	111/1
Icc	Supply Current	V _{CC} = Max (Note 6)			17	30	mA

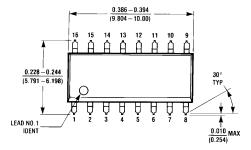
$\textbf{Switching Characteristics} \text{ at V}_{CC} = 5 \text{V and T}_{A} = 25 ^{\circ}\text{C (See Section 1 for Test Waveforms and Output Load)}$

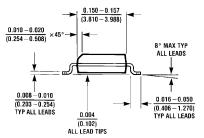

	Parameter	From (Input) To (Output)	54LS C _L = 50 pF		$\begin{array}{c} \text{DM74LS} \\ \text{C}_{\text{L}} = 50 \text{ pF} \\ \text{R}_{\text{L}} = 667 \Omega \end{array}$		Units
Symbol							
			Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency		30		20		ns
t _{PLH}	Propagation Delay Time Low to High Level Output	Clock to Output		28		25	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	Clock to Output		28		28	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	Clear to Output		30		30	ns
^t PZH	Output Enable Time to High Level Output	Output Control (M or N) to Any Q		23		26	ns
t _{PZL}	Output Enable Time to Low Level Output	Output Control (M or N) to Any Q		28		24	ns
t _{PHZ}	Output Disable Time from High Level Output (Note 7)	Output Control (M or N) to Any Q		17		17	ns
t _{PLZ}	Output Disable Time from Low Level Output (Note 7)	Output Control (M or N) to Any Q		23		25	ns

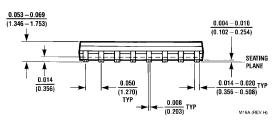

Note 4: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

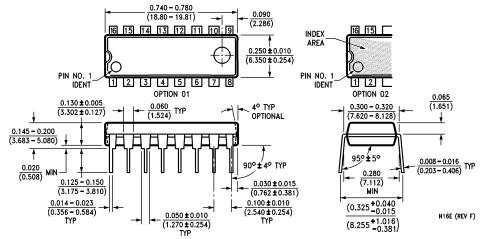

Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second.

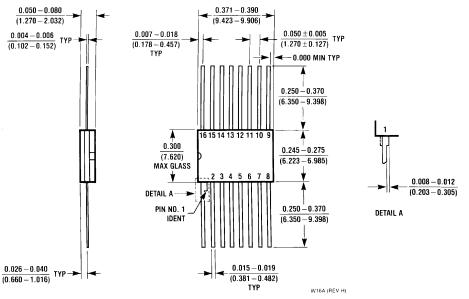
Note 6: I_{CC} is measured with all outputs open: Clear grounded after a momentary 4.5V; N, G1, G2 and all data inputs grounded: and the CLOCK and M input at 4.5V.


Note 7: $C_L = 5 pF$.






Physical Dimensions inches (millimeters) (Continued)



16-Lead Small Outline Molded Package (M) Order Number DM74LS173AM NS Package Number M16A

16-Lead Molded Dual-In-Line Package (N) Order Number DM74LS173AN NS Package Number N16E

Physical Dimensions inches (millimeters) (Continued)

16-Lead Ceramic Flat Package (W) Order Number 54LS173FMQB NS Package Number W16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor

National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 **National Semiconductor** Hong Kong Ltd.

13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.
Tsimshatsui, Kowloon

Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408